

Aurikuläre Vagus Nerv Stimulation (aVNS)

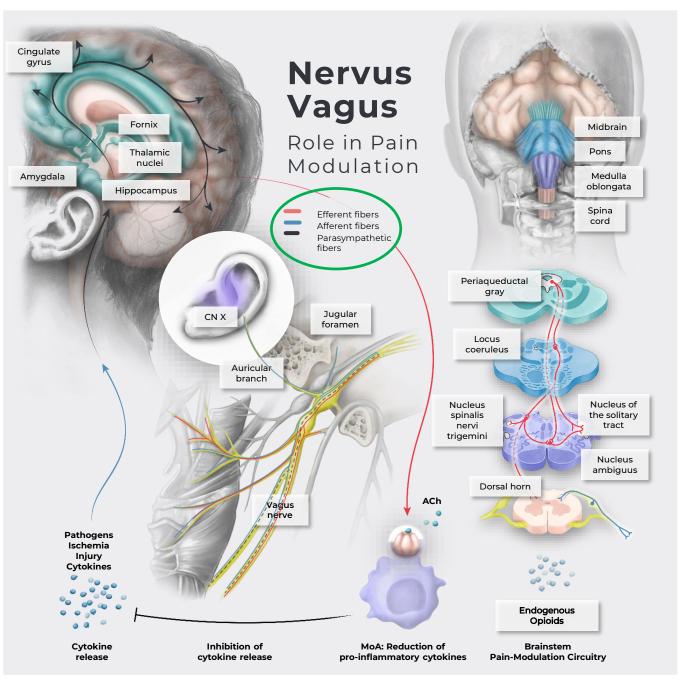
Wirkmechanismen und klinische Wirksamkeit der aVNS in der Schmerztherapie

Prim. Univ.-Prof. Dr. Rudolf Likar, MSc

Abteilung für Anästhesiologie und Intensivmedizin, Klinikum Klagenfurt am Wörthersee, Klagenfurt, Österreich Sigmund Freud Privatuniversität, Wien, Österreich

PALLIATIVMEDIZIN · ANÄSTHESIE · INTENSIVMEDIZIN · NOTFALLMEDIZIN · SCHMERZMEDIZIN

Interessenkonflikte


Beraterhonorare von der Firma AURIMOD GmbH

AGENDA

- Schmerz und der Vagus Nerv
- Vagus Nerv Stimulation
- Klinische Evidenz
- Ambulante Codierung
- Zusammenfassung & Ausblick

Schmerz und der Vagus Nerv

DER VAGUS NERV

längster Nerv innerhalb des vegetativen Nervensystems

Schlüsselkomponente des **parasympathischen**Nervensystems → reguliert entscheidende

Funktionen, Entspannung und Ruhe

wichtiger Signalweg **Organe** → **Gehirn**

80 % afferente Fasern, 20% efferente Fasern

wesentliche Rolle in der **Schmerzwahrnehmung und**-verarbeitung

sendet afferente Fasern zur Ohrmuschel

DER VAGUS NERV

Herz

Verminderte Herzfrequenz, Gefäßtonus

Leber

Reguliert Insulinsekretion und Glukosehomöostase

Magen

Erhöht Magenmotilität, Säuregehalt des Magens

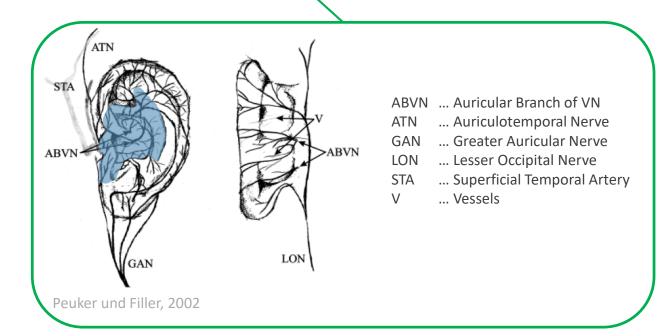
Entzündung

Unterdrückt Entzündungen über Reflexe

Gehirn

Reguliert Bewusstsein, Stimmung,
Schmerzverarbeitung
Verstärkt die Neuroplastizität
Entgegengesetzt zur sympathischen
Stressreaktion

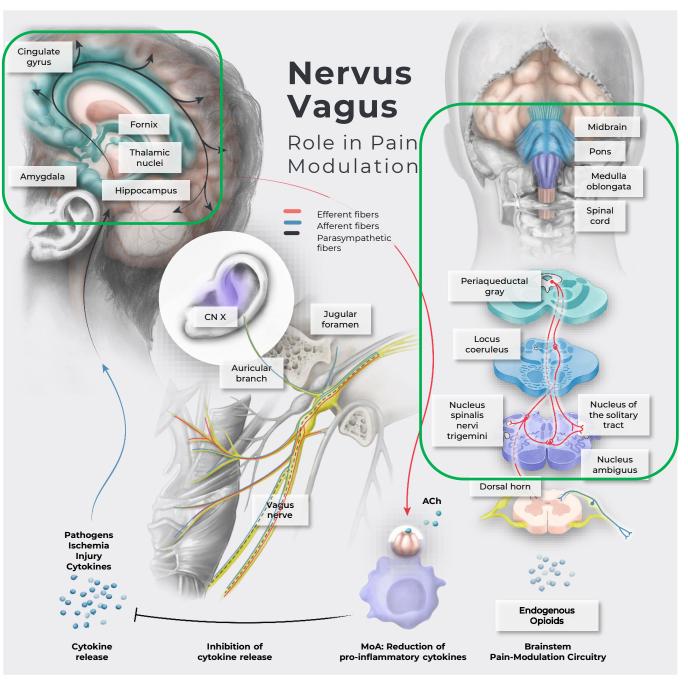
Blutgefäße


Verringert Gefäßtonus und Blutdruck

Kehle

Schlucken, Husten, Tauchreflex

© AURIMOD GmbH, 2024

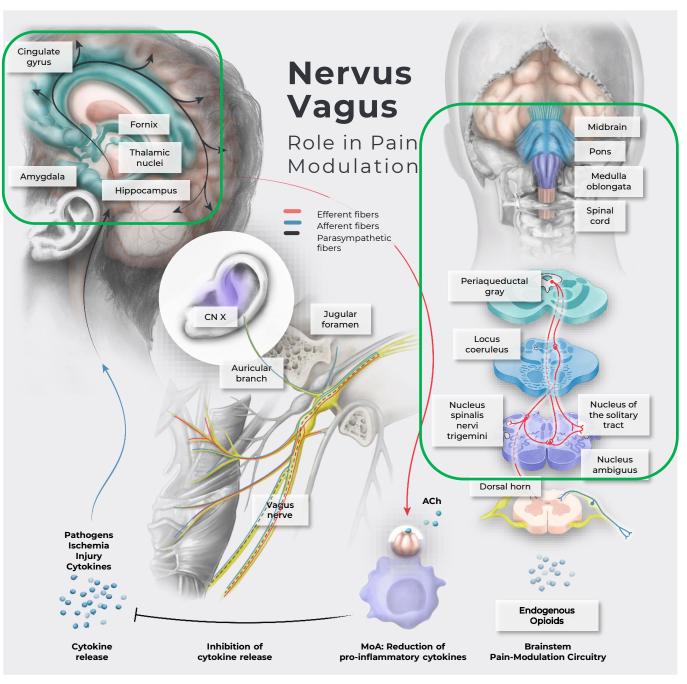

DER VAGUS NERV

Innervierung der Ohrmuschel durch den aurikulären Vagus Nerv

speziell von Concha (Cymba und Cavity), Antihelix, Tragus und Crus of Helix

Ko-Innervierung der Ohrmuschel durch:

- Nervus auriculotemporalis (trigeminal)
- Nervus auricularis magnus (C2/C3)
- Nervus occipitalis minor

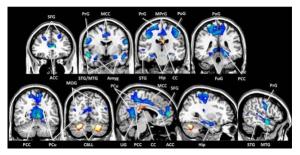

DER VAGUS NERV

Stimulation des aurikulären Vagusnervs (aVNS) moduliert:

Nucleus tractus solitarii und Nucleus spinalis nervi trigemini

mit Projektionen zum Locus coeruleus (noradrenerg), Raphe-Kernen (serotonerg), Amygdala, Thalamus und dem periaquäduktalen Grau

Dadurch kann die aVNS die **funktionelle Aktivität** z.B. im Thalamus, Hippocampus,
Amygdala, Gyrus cinguli, orbitofrontalem
Kortex, Expression von **Neurotransmittern** und
die **autonome Funktion** verändern



DER VAGUS NERV

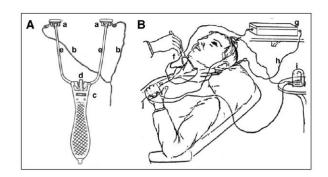

Stimulation des aurikulären Vagusnervs (aVNS) moduliert:

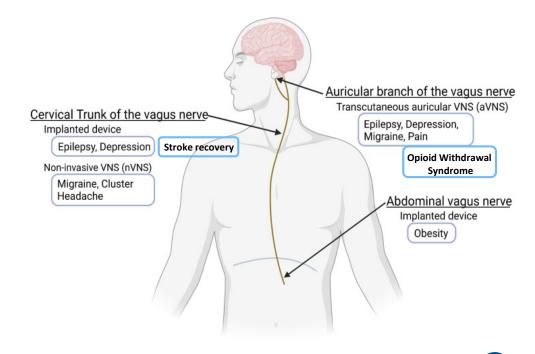
Nachweis über zahlreiche fMRI-Studien und Analyse der Herzratenvariabilität

aVNS verändert die Gehirnfunktion in Regionen, die z.B. an der Entstehung von Anfällen, dem Bewusstsein, der Stimmung, der Schmerzverarbeitung, der Herz-Kreislauf-Regulation, der Motorik, u.a. beteiligt sind

Yakunina et al. 2017. Neuromodulation 20(3):P290-300.

Wirkmechanismen


Analgetische Wirkung der aVNS:


- Aktivierung absteigender Schmerzkontrollwege durch die Freisetzung endogener
 Opioide
- Veränderung der Schmerzwahrnehmung, über limbisches System & präfrontalen Kortex
- parasympathische Aktivierung und sympatholytische Wirkung
- Aktivierung entzündungshemmender Prozesse durch den cholinergen antiinflammatorischen Reflex

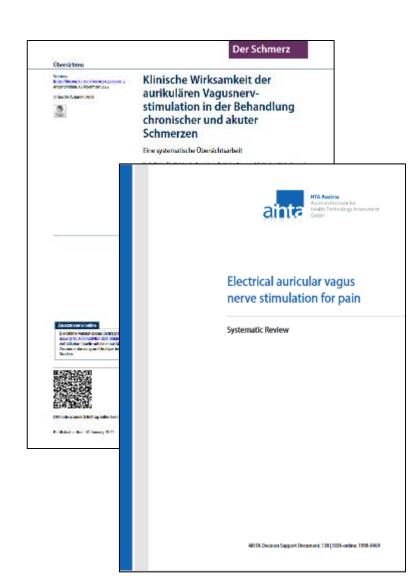
Vagus Nerv Stimulation (VNS)

GESCHICHTE DER VNS

- Ende 1900: Karotis-"Elektrokompressor" (James Corning, Neurologe) zur Behandlung von Anfällen
- 1988: erstes zugelassenes VNS-Implantat (iVNS) bei Epilepsie
- 2000: Erste Anwendung der perkutanen aVNS für chronische Schmerzen
- 2005: iVNS bei behandlungsresistenter Depression
- 2012: transkutane aVNS bei Epilepsie
- 2015: iVNS bei Adipositas
- 2017: perkutane aVNS bei akutem Opiat-Entzug
- 2018/19: nicht-invasive zervikale VNS bei Migräne und Clusterkopfschmerz
- 2021: iVNS zur Rehabilitation nach Schlaganfällen (Closed-Loop VNS-System)
- 2021: **neue Generation perkutaner aVNS** zur chronischen und akuten Schmerztherapie (z.B. VIVO®-System)

VORTEIL NICHT-INVASIVER VNS

- **Leichterer und breiterer Einsatz** nicht-invasiver Systeme
- Reduzierte Kosten und Risiken der Anwendung
- **Geringere Nebenwirkungen** nicht-implantierter VNS-Systeme
 - iVNS: Heiserkeit, Parästhesien, Atemnot, Husten, Halsschmerzen, Kopfschmerzen, Hypophonie, Stimmbandlähmung, Gefühl der Halsverengung, Bauchschmerzen, Kieferschmerzen
 - aVNS: lokale Hautreizung oder Infektion der Haut, Brennen, Rötung/Schmerzen/Juckreiz an den Applikationsstellen, vorübergehender Schwindel/Benommenheit, vorübergehende Kopfschmerzen, sehr selten Tachykardie, Bradykardie, Synkope



Klinische Evidenz

Aktuelle Studien zeigen:

- bis zu 83% nachhaltige Schmerzreduktion bei chronischen Rückenschmerzen,
 Response nach 1-2 Wochen (1)
- bis zu 59% Responder bei chronischen Rückenschmerzen, >50%
 Schmerzreduktion, retrospektive Analyse in n=148 Patienten (2)
- Review und Meta-Analyse bestätigt Wirksamkeit bei chronischem Rückenschmerz, Migräne, Abdominalschmerz (3)
- In einer Mehrzahl der Studien konnte eine Reduktion der Schmerzmedikation (Opiate) und eine Verbesserung der Lebensqualität (inkl. Verbesserung der psych. Komorbiditäten) gezeigt werden
- Das Austrian Institute for Health Technology Assessment (AIHTA) hat die Methode bei bestimmten chronischen und akuten Schmerzen als effektiv, sicher und kosteneffizient bewertet (https://eprints.aihta.at/1457/)

Aktuelle Studien zeigen:

- bis zu 83% nachhaltige Schmerzreduktion bei chronischen Rückenschmerzen,
 Response nach 1-2 Wochen (1)
- bis zu 59% Responder bei chronischen Rückenschmerzen, >50%
 Schmerzreduktion, retrospektive Analyse in n=148 Patienten (2)
- Review und Meta-Analyse bestätigt Wirksamkeit bei chronischem Rückenschmerz, Migräne, Abdominalschmerz (3)
- In einer Mehrzahl der Studien konnte eine Reduktion der Schmerzmedikation (Opiate) und eine Verbesserung der Lebensqualität (inkl. Verbesserung der psych. Komorbiditäten) gezeigt werden
- Das Austrian Institute for Health Technology Assessment (AIHTA) hat die Methode bei bestimmten chronischen und akuten Schmerzen als effektiv, sicher und kosteneffizient bewertet (https://eprints.aihta.at/1457/)

Klinische Wirksamkeit der aurikulären Vagus Nerv Stimulation bei der Behandlung von chronischen und akuten Schmerzen – ein systematischer Review und Metaanalyse

Pain Ther https://doi.org/10.1007/s40122-024-00657-8

REVIEW

Clinical Efficacy of Auricular Vagus Nerve Stimulation in the Treatment of Chronic and Acute Pain: A Systematic Review and Meta-analysis

Irina T. Duff \cdot Rudolf Likar $^{\odot}$ \cdot Christophe Perruchoud \cdot Stefan Kampusch \cdot Markus Köstenberger \cdot Sabine Sator \cdot Caroline Stremnitzer \cdot Andreas Wolf \cdot Stefan Neuwersch-Sommeregger \cdot Alaa Abd-Elsayed

METHODE

Primary Literature PubMed S. Scholar Scopus n=822 n=1469 n=847 Quick Screening - Removal of **Duplicates per Database** n=793 n=1065 n=726 Screening Removal of Reviews, Duplicates Preclinical Studies, Study Protocols, Unrelated Content, language not engl/ger (Title, Publication Type) n=347 Qualification Reviewing for Relevance (pain, VNS, study type) (Title & Abstract) aVNS (n=252)Summary Inclusion, Analysis, Jadad, Reviewing Indications (pain) and Interventions (aVNS) (Fulltext) Scientific Validity, **Chronischer Schmerz** aVNS + pain (n=42) Akuter postoperativer Schmerz Akuter experimenteller Schmerz

Systematische Literatursuche im Zeitraum 01.01.2000-01.05.2023, **2.490 Arbeiten**

Keywords: auric* vagus nerve stimulation, auric* elect* stimulation, auric* elect* vagus nerve stimulation, auricular neurostimulation (+ pain [if >1,000 results]), VNS and pain

Bewertung: 2 unabhängige Gutachter*innen (Jadad-Skala und wissenschaftliche Validität)

Weitere Analyse und Zusammenfassung: Indikationen, Anzahl der eingeschlossenen Patient*innen, Stimulationsparameter, Outcome-Parameter und Outcome

Indikationen*	Anzahl Studien	Patient*innen (aVNS)
Chron. IBS/abdom. Schmerz	7	151
Migräne	4	133
Rückenschmerz	5	225
Rheum. Arthritis/Osteoarthritis	2	45
Fibromyalgie/syst. Lupus/Spondylosis	4	56
CIPN	1	58
unspezif. chron. Schmerz	1	3
chron. Schmerz + Depression	1	28

^{*}manche Studien mit mehr als 1 Indikation;

CIPN: Chemotherapie-induzierte periphere Neuropathie; IBS: Irritable Bowel Syndrome

ERGEBNISSE

Chronischer Schmerz (Review)

- 23 Studien, n=696 aVNS behandelte
 Patient*innen
- 12 randomisierte kontrollierte Studien
- 1 randomisierte Crossover Studie
- 7 Fallserien
- 2 retrospektive Kohortenstudien
- 1 Fall-Kontrollstudie
- Endpunkte: VAS/NRS, Wohlbefinden
 Toleranz/Sicherheit der Stimulation
- Stärkste Evidenz bei chronischem
 Rückenschmerz, Abdominalschmerz und
 Migräne

Autor*in*	Indikation	Primäres Ergebnis
Sator-Katzenschl. 2003	chron. Zervikalsyndrom	VAS ↓ pVNS vs. Sham
Sator-Katzenschl. 2004	chron. unterer Rückenschmerz	VAS ↓ pVNS vs. Sham
Straube 2015	chron. Migräne	Kopfschmerztage ↓ tVNS (1Hz) vs. tVNS (25Hz)
Kovacic 2017	chron. abdominal Schmerz (11-18 Jahre)	PFSD ↓ pVNS vs. Sham
Krasaelap 2019	IBD-Schmerz	schwerer abdom. Schmerz↓ pVNS vs. Baseline
Kutlu 2020	Fibromyalgie	VAS↓, Depression↓, Angst↓, Funktionalität↑, SF-36↑ tVNS + Training vs. Training
Aranow 2021	SLE und muskuloskelettaler Schmerz	Schmerz↓, Müdigkeit↓ tVNS vs. Sham
Zhang 2021	Migräne ohne Aura	Migränetage ↓, Schmerzintensität ↓ , Dauer ↓ tVNS vs. Sham
Li 2022	Depression mit chron. Schmerz	VAS ↓ , Depression ↓ tVNS + EA vs Baseline, vergleichbare Wirksamkeit zu Citalopram
Ünal 2022	myofasziales Schmerzsyndrom (Nacken)	VAS↓, Algometer↑, Jamar↑, SF-36↑ tVNS + IC + Training vs Baseline; nicht vs. Kontrollgruppe (Training + IC)

- meist Verbesserung VAS/NRS/krankheitsbezogener Endpunkt
- 18 von 23 Studien statistisch signifikant
 im Vergleich zu Baseline und/oder zu
 Kontrollgruppe
- in 3 der 12 RCTs (chron. Rücken-/Bauchschmerzen) anhaltende
 Schmerzreduktion (≤ 12 Monate)
- Schmerzmedikation reduziert in 6 von
 8 Studien während/nach aVNS
- meist signifikante Verbesserung sek.
 Parameter (Wohlbefinden,
 Lebensqualität, Schlaf, u.a.)

Table 2 Results of the risk-of-bias 2 tool assessment [46]

Author	Risk-of-bias domains					
	D1	D2	D3	D4	D5	Overall
Chronic pain						
Sator-Katzenschlager et al. [60]	SC	Н	L	SC	L	High
Sator-Katzenschlager et al. [58]	SC	Н	L	SC	L	High
Napadow et al. [53]	L	Н	L	SC	L	High
Straube et al. [57]	SC	SC	L	SC	L	High
Kovacic et al. [50]	L	L	L	L	L	Low
Krasaelap et al. [51]	L	Н	L	L	L	High
Kutlu et al. [66]	Н	Н	L	SC	L	High
Shi et al. [70]	SC	SC	L	SC	L	High
Aranow et al. [65]	SC	L	L	L	L	Some con- cern
Woodbury et al. [67]	SC	Н	L	SC	L	High
Zhang et al. [36]	L	SC	L	L	L	Some con- cern
Li et al. [69]	L	SC	L	L	L	Some con- cern
Ünal et al. [59]	SC	Н	L	SC	L	High
Uzlifatin et al. [62]	SC	Н	L	SC	L	High

Chronischer Schmerz – Biasanalyse (RoB 2)

- 14 Studien eingeschlossen
- 10 Studien hohes Risiko
- 3 Studien mittleres Risiko
- 1 Studie geringes Risiko
- Bias hauptsächlich zufolge Verblindung bei Neuromodulationsstudien
- Konservative Bewertung

D1 – Bias arising from the randomization process. D2 – Bias due to deviation from intended intervention. D3 – Bias due to missing outcome data. D4 – Bias in measurement of the outcome. D5 – Bias in selection of the reported result. H – High; SC – Some Concern, L – Low.

Indikationen	Anzahl Studien	Patient*innen (aVNS)
Gynäkologische Interventionen	4	115
Abdominale Interventionen	4	67
Tonsillektomie (Erwachsene)	1	16
Weisheitszahnextraktion	1	48
Orthopädische Intervention	1	7
Rekonstruktion des vorderen Kreuzbandes	1	39

Akuter postoperativer Schmerz (Review)

- 12 Studien, n=292 aVNS behandelte
 Patient*innen
- 8 randomisierte kontrollierte Studien
- 2 Fallserien
- 2 Fall-Kontrollstudien
- Endpunkte: VAS/NRS, Opioidbedarf,
 Toleranz/Sicherheit der Stimulation,
 Mobilität
- Stärkste Evidenz bei gynäkologischen,
 abdominalen und orthopädischen
 Eingriffen

Author	Indication	Primary results
Acute postoperative pain		
Sator-Katzenschlager et al. [73]	Perioperative (oocyte-aspiration)	<i>VAS</i> ↓ pVNS vs. sham
Likar et al. [77]	Postoperative (laparoscopic nephrectomy)	VAS at rest↓, VAS on exertion↓ 1 h postop erative pVNS vs. sham
Michalek-Sauberer et al. [79]	Postoperative (third molar tooth extraction)	VAS \leftrightarrow , analgesic consumption \leftrightarrow pVNS vs. sham
Kager et al. [78]	Postoperative (tonsillectomy)	$VAS\downarrow$ 9, 12, 24 h postoperative pVNS vs. sham
Holzer et al. [71]	Postoperative (gynecological surgery)	$VAS \leftrightarrow pVNS$ vs. sham
Tsang et al. [72]	Postoperative (hysterectomy)	$VAS\downarrow$, PEFR \leftrightarrow tVNS vs. baseline/control
Chakravarthy et al. [15]	Postoperative (cesarean section)	NRS↓ pVNS vs. control
Ahmed et al. [74]	Postoperative (Roux-en-Y gastric bypass)	<i>OME</i> ↔ 24 h post-OP pVNS vs. control
Blank et al. [75]	Postoperative (colorectal surgery)	OME ↔ pVNS vs. sham (overall); <i>OME</i> ↓ pVNS vs. sham (open surgery)
Chelly et al. [76]	Postoperative (kidney donor surgery)	OME↓ 24 h post-OP pVNS vs. control
Ilfeld et al. [81]	Postoperative (orthopedic and breast surgery)	Low NRS, low opioid requirement
Zhou et al. [80]	Postoperative (rebound pain ropivacaine femoral nerve block for ACLR)	NRS↓ sleep disturbances↓, analgesics↓ pVNS vs. sham (8 h/12 h after surgery)

- VAS in manchen Studien bzw. zu manchen Zeitpunkten signifikant geringer im Vergleich zu Sham/Kontrolle
- Geringere Opioid-/Analgetika Einnahme in manchen Studien
- Tendenz zu besserem Effekt bei invasiveren Eingriffen (z.B. offener abdominaler Intervention)

Table 2 Results of the risk-of-bias 2 tool assessment [46]

Author	Risk-of-bias domains						
	D1	D2	D3	D4	D5	Overall	
Acute postoperative pain							
Sator-Katzenschlager et al. [73]	SC	SC	L	SC	L	High	
Likar et al. [77]	L	L	L	L	L	Low	
Michalek-Sauberer et al. [79]	Н	SC	L	SC	L	High	
Kager et al. [78]	L	L	L	L	L	Low	
Holzer et al. [71]	L	L	L	L	L	Low	
Tsang et al. [72]	L	Н	L	L	L	High	
Blank et al. [75]	SC	L	L	L	SC	Some con-	
						cern	
Zhou et al. [80]	L	L	L	L	L	Low	

Akuter postoperativer Schmerz – Biasanalyse (RoB 2)

- 8 Studien eingeschlossen
- 3 Studien hohes Risiko
- 1 Studie mittleres Risiko
- 4 Studien geringes Risiko

D1 – Bias arising from the randomization process. D2 – Bias due to deviation from intended intervention. D3 – Bias due to missing outcome data. D4 – Bias in measurement of the outcome. D5 – Bias in selection of the reported result. H – High; SC – Some Concern, L – Low.

Meta-Analyse

METHODE

Primärer Endpunkt:

Schmerzstärke (VAS)

<u>Verwendete Daten</u>

Akuter Schmerz: Werte innerhalb der erst 24 Stunden postoperativ

Chronischer Schmerz: Werte End-of-Treatment

Berechnung der Effektgröße:

Mittelwert & Standardabweichung zwischen aVNS vs. Sham-/Kontrollgruppe

Forestplots:

Hedges' g/Differenz der Mittelwerte [95% CI – Konfidenzintervall] und kombinierte Effektgröße für die Gesamt- und Subgruppenanalyse

Chi-Square-Tests wurden zur Testung der Unterschiede zwischen den Gruppen verwendet (p-Wert < 0,05 statistisch signifikant)

CHRONISCHER SCHMERZ

Signifikant besserer Outcome aktive aVNS vs. Sham-aVNS/Kontrolle (-1.95 [-3.94: 0.04], p=0.008)

Höchste Effektgröße bei chron. Zervikalsyndrom und chron. Rückenschmerz

Study name	Test groups	Weight (%)	Hedges' g [95% CI]	_
Shi, 2021	tVNS vs control (elbow)	15.37	-1.15 [-1.85, -0.49]	-•-
Sator-Katzenschlager, 2003	pVNS vs sham	8.61	-7.37 [-10.21, -5.14]	
Aranow, 2021	tVNS vs sham	14.35	-0.56 [-1.61, 0.44]	
Kutlu, 2020	tVNS+training vs training	15.69	-0.48 [-1.04, 0.07]	-
Sator-Katzenschlager, 2004	pVNS vs sham	14.78	-3.79 [-4.69, -2.98]	-• -
Li, 2022	tVNS+EA vs Citalopram	15.48	-2.01 [-2.67, -1.4]	-•-
Zhang, 2021	tVNS vs sham	15.74	-0.74 [-1.29, -0.22]	-•-
Combined Effect Size		100.0	-1.95 [-3.94, 0.04]	
				-10 -8 -6 -4 -2 0 Hedges' g

CHRONISCHER SCHMERZ

aktive **pVNS** (Nadelelektroden) zeigte eine höhere Effektgröße im Vergleich zu aktiver tVNS (Oberflächenelektroden) (p=0.015) [Cave: geringe Stichprobengröße]

Study name / Subgroup na	me Test groups	Weight (%)	Hedges' g [95% CI]	
Sator-Katzenschlager, 2003	pVNS vs sham	44.98	-7.37 [-9.9, -4.83]	
Sator-Katzenschlager, 2004	pVNS vs sham	55.02	-3.79 [-4.64, -2.93]	-•-
pVNS		42.01	-5.4 [-8.94, -1.85]	
Shi, 2021	tVNS vs control (elbow)	19.97	-1.15 [-1.82, -0.47]	
Aranow, 2021	tVNS vs sham	15.39	-0.56 [-1.58, 0.47]	-
Kutlu, 2020	tVNS+training vs training	21.87	-0.48 [-1.04, 0.08]	-
Li, 2022	tVNS+EA vs Citalopram	20.59	-2.01 [-2.65, -1.38]	-•-
Zhang, 2021	tVNS vs sham	22.18	-0.74 [-1.28, -0.21]	-
tVNS		57.99	-1.0 [-1.55, -0.44]	-
Combined Effect Size		100.0	-2.85 [-5.29, -0.4]	→
				-10 -8 -6 -4 -2 Hedges' g

AKUTER SCHMERZ

Kein Unterschied in kombinierte Effektgröße & mittlere Differenz von -0.7 [-2.34; 0.93] (p=0.15) von aktiver aVNS vs. Sham-aVNS/Kontrolle

Abhängigkeit der Ergebnisse von spezifischer Studie, Indikation, Ko-Medikation, Messzeitpunkten (statistisch signifikante Unterschiede zu manchen Messpunkten oder bei spezifischer Schmerzart, Ruhe-, Bewegungsschmerz)

Study name	Test groups	Weight (%)	Hedges' g [95% CI]	_	
Chelly, 2022	pVNS vs control	11.79	-1.94 [-3.13, -0.92]		
Sator-Katzenschlager, 2006	pVNS vs sham	13.09	-1.06 [-1.6, -0.54]		
Sator-Katzenschlager, 2006	pVNS vs control	13.0	-1.48 [-2.07, -0.93]	-•-	
Tsang, 2011	tVNS vs sham	12.74	-0.41 [-1.13, 0.29]	-	
Tsang, 2011	tVNS vs control	12.62	-1.16 [-1.96, -0.43]	-• -	
Holzer, 2011	pVNS vs control	12.8	-1.11 [-1.81, -0.46]	-•-	
Likar, 2007	pVNS vs sham	11.67	4.1 [3.08, 5.29]		
Kager, 2009	pVNS vs sham	12.28	-2.28 [-3.24, -1.44]		
Combined Effect Size		100.0	-0.7 [-2.34, 0.93]		>
				-2 0 2 4 Hedges' g	

AKUTER SCHMERZ

Effektgrößen vergleichbar zwischen pVNS und tVNS (-0.66 [-2.53; 1.20] vs. -0.77 [-1.52; -0.02])

[Cave: geringe Stichprobengröße]

Study name / Subgroup name	Test groups	Weight (%)	Hedges' g [95% CI]	_
Chelly, 2022	pVNS vs control	16.04	-1.94 [-3.05, -0.83]	
Sator-Katzenschlager, 2006	pVNS vs sham	17.29	-1.06 [-1.59, -0.53]	
Sator-Katzenschlager, 2006	pVNS vs control	17.21	-1.48 [-2.05, -0.91]	
Holzer, 2011	pVNS vs control	17.02	-1.11 [-1.79, -0.44]	
Likar, 2007	pVNS vs sham	15.92	4.1 [3.0, 5.21]	
Kager, 2009	pVNS vs sham	16.52	-2.28 [-3.18, -1.38]	—
pVNS		13.6	-0.66 [-2.53, 1.2]	
Tsang, 2011	tVNS vs sham	51.63	-0.41 [-1.12, 0.3]	-
Tsang, 2011	tVNS vs control	48.37	-1.16 [-1.93, -0.4]	
tVNS		86.4	-0.77 [-1.52, -0.02]	
Combined Effect Size		100.0	-0.76 [-3.12, 1.61]	-
				-2 0 2 4
				Hedges' g

Conclusio Review und Meta-Analyse

- die aVNS ist eine nicht-medikamentöse, effektive, nebenwirkungsarme Behandlungsoption bei chronischen
 Schmerzerkrankungen, im Speziellen bei chronischen Rückenschmerzen, Abdominalschmerzen und Migräne
- schwächere Evidenz für die Wirksamkeit bei akutem Schmerz außer bei einzelnen Indikationen wie offenen Baucheingriffen, gynäkologischen Eingriffen
- in vielen Studien konnten Begleitmedikationen (insbesondere Schmerzmedikation und Opiate) signifikant reduziert werden
- die aVNS zeigt einen allgemeinen positiven Effekt auf Lebensqualität, (psychisches) Wohlbefinden, Schlaf und Stimmung
- Zukünftig weitere Harmonisierung von Studiendesigns und weitere RCTs wünschenswert
- Weitere Studien zur Identifikation der optimalen Patientenpopulation (Responder/Non-Responder) und Wahl der idealen Parameter für bestmögliches Therapieansprechen wünschenswert

Ambulante Codierung

AMBULANTE LKF-CODIERUNG

- Ab 01.01.2025 spitalsambulante Verrechnung möglich
- Leistung AP560 "Anlage eines Systems zur aurikulären Vagusnervstimulation"
- Verrechnung "je Sitzung"
- Neue Pauschalgruppe APG 23.02 "Spezielle Schmerztherapie" (Anästhesie)
- 410 Punkte (390 Leistungspunkte, 20 Kontaktpunkte)
- Einschränkung auf bestimmte Hauptdiagnosen, die nachvollziehbar dokumentiert werden müssen

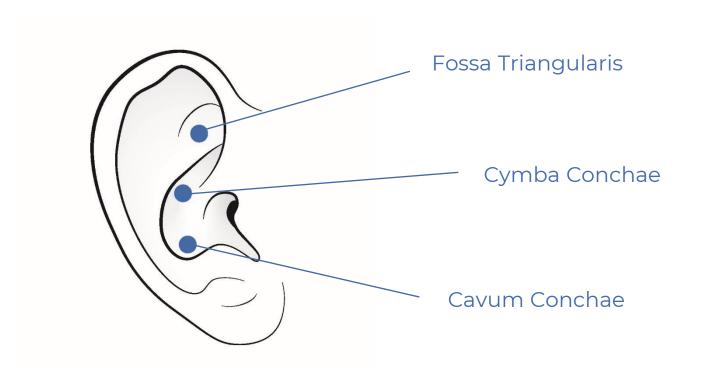
AP560

Anlage eines Systems zur aurikulären Vagusnervstimulation (LE=je Sitzung)

Anlage der Elektroden in vagal innervierten Bereichen der Ohrmuschel (Fossa Triangularis, Cymba Conchae, Cavum Conchae), Verbindung mit dem Stimulator und Befestigung des Stimlators (hinter dem Ohr am Hals). Schmerztherapie bei ausgewählten Indikationen:

- K58 (alle) Reizdarmsyndrom (= Abdominalschmerz bei Reizdarmsyndrom),
- M79.1 Myalgie (= myofasziale Schmerzen)
- G43.0 Migräne ohne Aura

Die Indikation ist in der Krankengeschichte nachvollziehbar zu dokumentieren.


APG23.02 Spezielle Schmerztherapie


> **FP A** 410 0<0>0

LEISTUNSGBESCHREIBUNG

Details der Leistungsbeschreibung:

- Anlage **Elektroden** in vagal innervierten Bereichen der Ohrmuschel
- Platzierung in <u>allen drei Regionen</u> **Fossa Triangularis, Cymba Conchae, Cavum Conchae**
- Verbindung mit dem Stimulator und Befestigung des Stimulators (hinter dem Ohr am Hals)

LEISTUNSGBESCHREIBUNG

Details der Leistungsbeschreibung:

Einschränkung der Hauptdiagnosen auf

K58	Reizdarmsyndrom Inkl.: Colon irritabile Irritables Kolon Reizkolon
K58.1	Reizdarmsyndrom, Diarrhoe-prädominant [RDS-D] Irritable bowel syndrome with predominant diarrhoea [IBS-D]
K58.2	Reizdarmsyndrom, Obstipations-prädominant [RDS-O] Irritable bowel syndrome with predominant constipation [IBS-C]
K58.3	Reizdarmsyndrom mit wechselnden (gemischten) Stuhlgewohnheiten [RDS-M] Irritable bowel syndrome with mixed bowel habits [IBS-M]
K58.8	Sonstiges und nicht näher bezeichnetes Reizdarmsyndrom Reizdarmsyndrom o.n.A.

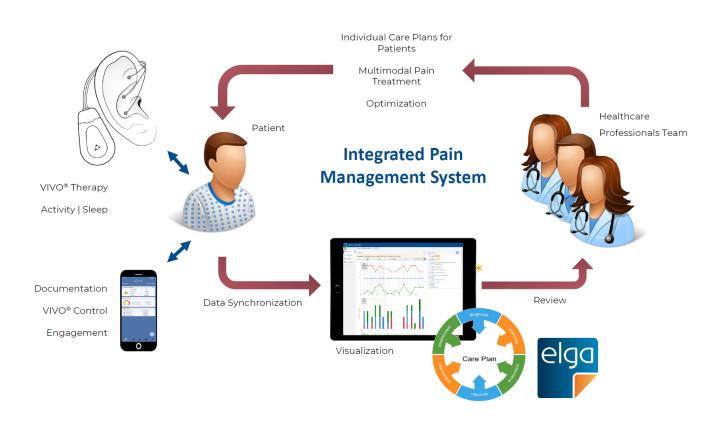
M79	Sonstige Krankheiten des Weichteilgewebes, anderenorts nicht klassifiziert [Schlüsselnummer der Lokalisation siehe am Kapitelanfang] Exkl.: Psychogene Schmerzen im Weichteilgewebe (F45.4)
M79.0	Rheumatismus, nicht näher bezeichnet Exkl.: Fibromyalgie (M79.7) Palindromer Rheumatismus (M12.3)
M79.1	Myalgie Exkl.: Myositis (M60)
M79.2	Neuralgie und Neuritis, nicht näher bezeichnet Exkl.: Ischialgie (M54.3-M54.4) Mononeuropathien (G56-G58)

G43	Migräne Soll bei Arzneimittelinduktion die Substanz angegeben werden, ist eine zusätzliche Schlüsselnummer (Kapitel XX) zu benutzen. Exkl.: Kopfschmerz o.n.A. (R51)
G43.0	Migräne ohne Aura [Gewöhnliche Migräne]
G43.1	Migräne mit Aura [Klassische Migräne] Migräne: • Äquivalente • Aura ohne Kopfschmerz

Zusammenfassung & Ausblick

Die aVNS ermöglicht zusammenfassend eine

- nicht medikamentöse
- minimal invasive
- personalisierbare
- gut verträgliche


Therapie von versch. Schmerzzuständen wie z.B.

- chr. Rückenschmerzen (Kreuzschmerz, Zervikalgie, Myalgie)
- chr. Migräne
- chr. Abdominellen Schmerzen (z.B. zufolge Reizdarmsyndrom)
- spezifischen akuten postoperativen Schmerzen

Ein Fonds der Stadt Wien

AUSBLICK

Klinische Prototypen des Therapiemanagementsystems verfügbar, einschließlich erster Ergebnisse bei Patienten mit chronischen Rückenschmerzen. Zusammenarbeit mit dem AIT - Austrian Institute of Technology zur Einbeziehung von individuellen Pflegeplänen und ELGA-Integration (Projekt: SENECA).

- [1] Likar et al. Der Schmerz. 2023
- [2] AIHTA. https://eprints.aihta.at/1457/. 2023
- [3] Position Paper of the Austrian Pain Association. Online. 2023

 Forschung am Einsatz der personalisierten aVNS in der multimodalen Schmerztherapie

Entwicklung von komplementären digitalen
 Lösungen

digitales Patiententagebuch (**Wohlbefinden**, **Dankbarkeit**, **Therapien**) + online Therapie-Management-System

 Sammeln digitaler Biomarker und Integration in digitale Patientenakte

Ziel: optimierte Schmerztherapie- und Begleitung – Interdisziplinär und Sektorübergreifend

Vielen Dank!